Search results for "Coronal seismology"

showing 2 items of 2 documents

Star-disk interaction in classical T Tauri stars revealed using wavelet analysis

2016

The extension of the corona of classical T Tauri stars (CTTS) is under discussion. The standard model of magnetic configuration of CTTS predicts that coronal magnetic flux tubes connect the stellar atmosphere to the inner region of the disk. However, differential rotation may disrupt these long loops. The results from Hydrodynamic modeling of X-ray flares observed in CTTS confirming the star-disk connection hypothesis are still controversial. Some authors suggest the presence of the accretion disk prevent the stellar corona to extent beyond the co-rotation radius, while others simply are not confident with the methods used to derive loop lengths. We use independent procedures to determine t…

010504 meteorology & atmospheric sciencesStars: flareAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsContext (language use)Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOrion NebulaDifferential rotationAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsCoronal seismologyHigh Energy Astrophysical Phenomena (astro-ph.HE)Stellar atmosphereAstronomy and AstrophysicsCoronaT Tauri starStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Slow-Mode Magnetoacoustic Waves in Coronal Loops

2021

Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called "SUMER" oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular…

010504 meteorology & atmospheric sciencesSolar activityFOS: Physical sciencesSolar corona01 natural sciencesStanding wave0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesCoronal seismologyPhysicsOscillationOscillations and wavesAstronomy and AstrophysicsCoronal loopLight curveThermal conductionCoronal loopsComputational physicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct